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Abstract

An exact nonreflecting boundary condition (NBC) is derived for the numerical solution of time-dependent multiple
scattering problems in three space dimensions, where the scatterer consists of several disjoint components. Because each
sub-scatterer can be enclosed by a separate artificial boundary, the computational effort is greatly reduced and becomes
independent of the relative distances between the different sub-domains. In fact, the computational work due to the
NBC only requires a fraction of the computational work inside X, due to any standard finite difference or finite element
method, independently of the mesh size or the desired overall accuracy. Therefore, the overall numerical scheme retains the
rate of convergence of the interior scheme without increasing the complexity of the total computational work. Moreover,
the extra storage required depends only on the geometry and not on the final time. Numerical examples show that the NBC
for multiple scattering is as accurate as the NBC for a single convex artificial boundary [M.J. Grote, J.B. Keller, Nonre-
flecting boundary conditions for time-dependent scattering, J. Comput. Phys. 127(1) (1996), 52–65], while being more effi-
cient due to the reduced size of the computational domain.
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1. Introduction

When an incident wave encounters an obstacle, it is scattered in the unbounded surrounding medium. If
two or more obstacles are present, the field scattered from one obstacle will induce further scattered fields from
all the other obstacles, which again will induce further scattered fields from all obstacles, and so forth. Such
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multiple scattering problems occur in a wide variety of applications from acoustics, electromagnetics, and elas-
ticity [26]. Thus, we seek efficient numerical methods to compute the total scattered field for time-dependent
multiple scattering problems.

A well-known approach for the numerical solution of scattering problems in unbounded regions is to
enclose all obstacles, inhomogeneities, and nonlinearities with an artificial boundary B. A boundary condition
is then imposed on B, which leads to a numerically solvable initial-boundary value problem in a bounded
domain X. The boundary condition should be chosen such that the solution of the problem in X coincides with
the restriction to X of the solution in the original unbounded region.

The numerical solution of the initial-boundary value problem in X contains two independent sources of
error: the discretization error in the interior, due to the finite difference or finite element method used inside
X, and the discretization error at the artificial boundary, due to some approximation used at B. To achieve
convergence, both error components must be reduced systematically and simultaneously, as the mesh is
refined, while the computational work due to the boundary condition at B should remain only a fraction
of the computational work inside X, independently of the desired accuracy. Otherwise, the boundary condi-
tion imposed at B will be too expensive and impractical.

When the scatterer consists of several obstacles, which are well separated from each other, the use of a sin-
gle artificial boundary to enclose the entire scattering region becomes too expensive. Instead it is preferable to
enclose every sub-scatterer by a separate artificial boundary Bj. Then we seek an exact boundary condition on
B = ¨Bj, where each Bj surrounds a single computational sub-domain Xj. This boundary condition must not
only let outgoing waves leave Xj without spurious reflection from Bj, but also propagate the outgoing wave
from Xj to all other sub-domains, which it may reenter subsequently. To derive such an exact boundary con-
dition, an analytic representation of the solution everywhere in the exterior region is needed. Neither absorb-
ing boundary conditions [3,8,31], nor perfectly matched layers [4,5,7] provide such an expression.

Thus far numerical methods for time-dependent multiple scattering have mainly been based on boundary
integral formulations, where the exact boundary condition is usually obtained from a retarded potential
boundary integral equation [19]. Similarly, an exact boundary condition was proposed by Ting and Miksis
[30], and later implemented by Givoli and Cohen [10]. It is based on a Kirchhoff integral representation of
the solution on B and requires storing the solution at a distinct surface strictly inside B for the length of time
it takes to propagate across X. Recently, Teng [29] derived a modified version that only employs a single arti-
ficial boundary; it also eliminates the long-time numerical instability, which had previously been observed in
[10].

Nevertheless, the straightforward evaluation of Kirchhoff-type boundary integrals for use as artificial
boundary conditions is too expensive. If Nh denotes the typical number of grid points used in any space dimen-
sion, the number of grid points inside X scales like N 3

h and that on the (two-dimensional) artificial boundary
like N 2

h. Hence, the computational work per time step inside X, due to any typical finite difference or finite ele-
ment method, scales like N 3

h. However, to update the solution at any particular point on the artificial bound-
ary, a two-dimensional space–time integral is required over past values on B, so that any Kirchhoff-integral
based boundary condition involves OðN 4

hÞ operations per time step at B. As a consequence, the boundary con-
dition is one order of magnitude more expensive than the numerical method used in the interior. Currently
much research in boundary integral methods is devoted to reducing that computational cost [6,9,25].

To avoid the difficulties mentioned above, we shall seek a nonreflecting boundary condition (NBC) for mul-
tiple scattering, based on a superposition of Fourier series representations of the solution in the exterior
region. Exact NBCs for time-dependent acoustic waves have been derived by Grote and Keller [12–14], Hag-
strom and Warburton [22], or Sofronov [28], – see also [1,20] – but always in the situation of a single compu-
tational domain. In a situation of multiple disjoint domains, however, waves are not purely outgoing outside
the computational domain X = ¨Xj, as they may bounce back and forth between domains. We shall show how
to overcome this difficulty and derive an exact NBC for multiple scattering. Because this exact boundary con-
dition allows the size of the computational sub-domains, Xj, to be chosen independently of the relative dis-
tances between them, the computational domain, X, can be chosen much smaller than that resulting from
the use of a single convex computational domain.

In Section 2, we derive the exact nonreflecting boundary condition for two scatterers. By combining Fourier
series representations with a progressive wave expansion by Wilcox [32], we show how to efficiently evaluate
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the boundary operators involved. The solution of the initial-boundary value problem in X, with this NBC
imposed on B, is shown to coincide with the restriction to X of the solution in the unbounded region X1.
The formulation is generalized to an arbitrary number of scatterers in Section 3. In Section 4, we examine
the computational cost of the multiple scattering NBC, and show that its complexity scales like N 3

h, too.
We also discuss in detail an explicit finite difference implementation. In Section 5, we demonstrate the accuracy
and convergence of the numerical scheme. We also compare the multiple scattering approach with the known
NBC for a single spherical artificial boundary [13,14], and show that the numerical solutions obtained by these
two different methods coincide. Finally, numerical experiments for an incident plane wave impinging on two
sound-soft spheres illustrate the stability and high accuracy of the NBC.

2. Two scatterers

We consider acoustic wave scattering from two bounded disjoint scatterers in unbounded three-dimen-
sional space. Each scatterer may contain one or several obstacles, inhomogeneities, and nonlinearity. We
let C denote the piecewise smooth boundary of all obstacles and impose on C a Dirichlet-type boundary con-
dition, for simplicity. In X1, the unbounded region outside C, the scattered field U = U(x, t) then solves the
following initial-boundary value problem:
o2U
ot2
� divðArUÞ ¼ F in X1 � I ; I :¼ ð0; T Þ; T > 0; ð1Þ

U ¼ U 0 in X1 � f0g; ð2Þ
oU
ot
¼ V 0 in X1 � f0g; ð3Þ

U ¼ G on C� I : ð4Þ
The material properties described by A may vary in space, while both F and G can vary in space and time; F

may also be nonlinear.
Next, we assume that both scatterers are well separated, that is we assume that we can surround them by

two nonintersecting spheres B1, B2 centered at c1, c2 with radii R1, R2, respectively. In the unbounded region
D, outside the two spheres, we assume that the medium is homogeneous and isotropic, that is A ” c2I, where
c > 0 constant and I the identity. Moreover, we assume that the source F and the initial values U0, V0 vanish in
D. Thus, in the exterior region the scattered wave U satisfies the homogeneous wave equation with constant
wave speed c and homogeneous initial conditions,
1

c2

o2U
ot2
� DU ¼ 0 in D� I ; c > 0 constant; ð5Þ

U ¼ 0 in D� f0g; ð6Þ
oU
ot
¼ 0 in D� f0g: ð7Þ
Because of the finite speed of propagation and the compact support of the initial data, the scattered field U is
purely radiating at large distance.

We wish to compute the scattered wave, U, in the computational domain X = X1nD, which consists of the
two disjoint components X1 and X2. Hence X is internally bounded by C = C1 [ C2, and externally by B = oD,
which consists of the two spheres B1 and B2 – see Fig. 1. To solve the scattering problem (1)–(4) inside X, a
boundary condition is needed at the exterior artificial boundary B = B1 [ B2. This boundary condition must
ensure that the solution in X, with that boundary condition imposed on B, coincides with the restriction to
X of the solution in the original unbounded region X1.

2.1. Nonreflecting boundary condition

In contrast to the situation of a single spherical artificial boundary, as considered for example by Hagstrom
and Hariharan [21], Sofronov [28], or Grote and Keller [13], we cannot simply expand u outside B either in



Fig. 1. A typical configuration with two scatterers is shown. Each scatterer consists of possibly several obstacles bounded by C1 and C2,
but may also contain inhomogeneity, anisotropy, nonlinearity and sources. The computational domain X = X1 [ X2 is externally bounded
by the artificial boundary B = B1 [ B2; the unbounded region outside X is denoted by D.

44 M.J. Grote, C. Kirsch / Journal of Computational Physics 221 (2007) 41–62
Fourier series or as a superposition of purely outgoing multipole fields. In fact, since part of the scattered field
leaving X1 will reenter X2 at later times, and vice versa, u is not outgoing in D. Thus, the boundary condition
we seek at B must not only let outgoing waves leave X1 without spurious reflection from B1, but also propagate
that wave field to X2, and so forth, without introducing any spurious reflections.

The outgoing field, as seen from X1, is fully determined by its boundary values on B1, while the incoming
field is fully determined by its boundary values on all other spheres. Because those values are time-retarded,
they are already known, so that the entire scheme remains explicit in time. Moreover, because the initial con-
ditions are confined to individual subdomains, the initial distribution of outgoing fields is known at t = 0 and
can be tracked with increasing time.

Let D1 denote the unbounded region outside B1 and D2 the unbounded region outside B2. We now decom-
pose the scattered wave U inside D = D1 \ D2 in two purely outgoing waves U1 and U2, which solve the fol-
lowing two problems:
1

c2

o2U 1

ot2
� DU 1 ¼ 0 in D1 � I ; ð8Þ

U 1 ¼ 0 in D1 � f0g; ð9Þ
oU 1

ot
¼ 0 in D1 � f0g ð10Þ
and
1

c2

o
2U 2

ot2
� DU 2 ¼ 0 in D2 � I ; ð11Þ

U 2 ¼ 0 in D2 � f0g; ð12Þ
oU 2

ot
¼ 0 in D2 � f0g: ð13Þ
We remark that (8)–(10) define an outgoing wave U1, as seen from B1, propagating with finite speed c into D1,
and similarly for (11)–(13) and U2. In fact, each wave field is only influenced by a single scatterer and com-
pletely oblivious to the other. Therefore, U1 and U2 are entirely determined by their values on B1 or B2, respec-
tively [24]. We now couple U1 and U2 with U by matching the values of U1 + U2 with those of U at
B = B1 [ B2:
U 1 þ U 2 ¼ U on B� I : ð14Þ

The two wave fields U and U1 + U2 both solve the homogeneous wave equation (5) in D, together with zero
initial conditions (6) and (7). Since U and U1 + U2 coincide on B, they must coincide everywhere and for all
time in the exterior region D (up to the boundary), because the initial-boundary value problem in D is well
posed [24]. We summarize this result in the following proposition. Moreover, before proceeding with the der-
ivation of the nonreflecting boundary condition, we shall also prove that the decomposition U = U1 + U2

introduced above always exists and is unique.
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Proposition 1. Let U solve the exterior Dirichlet problem (1)–(4) and assume that U satisfies (5)–(7) in the

exterior region D. Then,
Fig. 2.
distanc
U � U 1 þ U 2 in D� I ; ð15Þ

where U1 and U2 are solutions to the problems (8)–(10) and (11)–(13), respectively, together with the matching

condition (14). The decomposition of U into the two purely outgoing waves U1 and U2 is unique.

Proof. By the argument above we have already shown that if U = U1 + U2 on B · I, where U1 and U2 solve
(8)–(13), then U ” U1 + U2 everywhere in D� I . We shall now show that U1 and U2 exist and, in fact, are
unique.

Existence. In the exterior region D · I we use Kirchhoff’s formula (see, for instance, [2]) to write
Uðx; tÞ ¼ 1

4p

Z
B
½U � o

on

1

q

� �
� 1

cq
oq
on

oU
ot

� �
� 1

q
oU
on

� �� �
ds; ð16Þ
for (x, t) 2 D · I. Here, and everywhere else throughout this paper [f] :¼ f(t � q/c) denotes the retarded values
of any time-dependent function f, while q :¼ |x � y|, y 2 B, and n denotes the unit normal vector pointing into
D. Let
Ujðx; tÞ ¼
1

4p

Z
Bj

½U � o

on

1

q

� �
� 1

cq
oq
on

oU
ot

� �
� 1

q
oU
on

� �� �
ds; ð17Þ
(x, t) 2 Dj · I, j = 1, 2. Because (17) is a combination of single and double layer retarded potentials with den-
sities U jBj

, otU jBj
, onU jBj

, the functions Uj each solve the wave equation in Dj · I, j = 1, 2 [2]. Clearly,

U1(x, t) + U2(x, t) = U(x, t), everywhere in D · I. With the jump relations for retarded potentials, the expres-
sions (16) and (17) can be extended up to the artificial boundaries B and B1, B2, respectively. Thus, U1 and U2

also satisfy the matching condition (14).
Uniqueness. Let U = V1 + V2 be another decomposition in D� I , where V1 and V2 solve (8)–(10) and (11)–

(13), respectively. We shall now show that V1 ” U1 and that V2 ” U2 in D� I . To do so, we let W1 :¼ U1 � V1

and W2 :¼ U2 � V2. Hence, W1 and W2 satisfy (8)–(10) and (11)–(13), respectively, while their sum
W1 + W2 = U1 + U2 � (V1 + V2) ” 0 in D� I .

Now, let d > 0 denote the distance between B1 and B2 and consider the two concentric open balls Gj Bj,
j = 1,2, each at distance d/2 – see Fig. 2. Because each Wj is zero outside Bj at time t = 0, it remains zero
outside Gj until the time t1 :¼ d/(2c), due to the finite speed of propagation. In particular, W1 vanishes inside
G2 for t 6 t1. Therefore, W2 = �W1 must also vanish in D2 \ G2, and thus everywhere in D2 up to time t1.
Similarly, we have W1 = 0 in D1 · [0, t1].
/ /

The construction used in the proof of Proposition 1: the sphere Bj is contained in the concentric open ball Gj, j = 1, 2. The shortest
e between the two artificial boundary components is d > 0. The shaded regions correspond to D1 \ G1 and D2 \ G2, respectively.
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Next, we consider the time interval [t1, t2] with t2 :¼ t1 + d/(2c). Because each Wj is zero outside Bj at time
t = t1, it remains zero outside Gj up to time t2. From the argument above, we conclude that Wj ” 0 in
Dj · [0, t2]. The same argument may be used repeatedly until the final time T is reached. h

As a consequence of Proposition 1, the decomposition of U in two outgoing wave fields U1, U2 is well
defined and we may now use it to determine a nonreflecting boundary condition for U on B. At B1, for
instance, the wave field U at any instant consists of both an outgoing wave U1 and an incoming wave U2. Since
U1 is purely outgoing as seen from X1, it satisfies the exact nonreflecting boundary condition [13] at B1,
whereas the field U2 at B1 is fully determined by its previous values at B2.

In Dj, j = 1, 2, we now introduce the (local) spherical coordinates (rj, /j, hj), where rj P Rj denotes the
radial, /j 2 [0, 2p) the longitudinal, and hj 2 [0, p] the azimuthal variable, respectively. Then,
B1U :¼ 1

c
o

ot
þ o

or1

� �
ðr1UÞ ¼ M1U 1 þ T 12U 2 on B1 � I ; ð18Þ

B2U :¼ 1

c
o

ot
þ o

or2

� �
ðr2UÞ ¼ M2U 2 þ T 21U 1 on B2 � I ; ð19Þ

U 1 þ P 12U 2 ¼ U on B1 � I ; ð20Þ
P 21U 1 þ U 2 ¼ U on B2 � I : ð21Þ
Here, the operator M corresponds to the (well known) exact nonreflecting boundary condition for a single
computational domain [13,14]:
ðBjUjÞðRj;/j; hj; tÞ ¼ ðMjU jÞð/j; hj; tÞ; j ¼ 1; 2: ð22Þ

The transfer operator, T, and the propagation operator, P, are defined as
ðT 12U 2Þð/1; h1; tÞ :¼ ðB1U 2ÞðR1;/1; h1; tÞ; ð23Þ
ðT 21U 1Þð/2; h2; tÞ :¼ ðB2U 1ÞðR2;/2; h2; tÞ; ð24Þ
ðP 12U 2Þð/1; h1; tÞ :¼ U 2ðR1;/1; h1; tÞ; ð25Þ
ðP 21U 1Þð/2; h2; tÞ :¼ U 1ðR2;/2; h2; tÞ: ð26Þ
To utilize (22)–(26) in computation, we shall need explicit formulas to efficiently evaluate M, P, and T. In par-
ticular, we shall need the means to evaluate an outgoing wave and its partial derivatives anywhere in D, given
its (past) values on B.

Clearly, the direct evaluation of M, P, or T via Kirchhoff type integrals, such as (16), is possible, yet it
would require a two-dimensional space–time integral over B for every point on B. The resulting computational
work would be one order of magnitude higher than that required in the interior, and thus too high a price to
pay. Instead, we shall derive an analytic representation for U that holds everywhere in D and thus permits the
efficient evaluation of all required quantities, without the need for space–time integration.

2.2. Wilcox expansion and efficient evaluation of M

By combining Fourier series with a progressive wave expansion by Wilcox, we shall now derive an analytic
representation for any outgoing wave field Uj in terms of its values at Bj, which holds everywhere outside of Bj.
Moreover, that expression will be more efficient than the direct evaluation via Kirchhoff’s formula (16). Based
on that representation formula, we shall then derive an explicit expression for Mj in (22), which incidentally
coincides with the exact nonreflecting boundary condition proposed in [13,14].

Since the same expression will be used for every individual field Uj, we now omit the index of the correspond-
ing subdomain for the rest of this section. Let U = U(r, /, h, t) be a purely outgoing wave field, which satisfies
the homogeneous wave equation with constant coefficients and zero initial conditions (5)–(7) in the region D,
outside the sphere B of radius R > 0 centered at the origin. By calculating the inverse Laplace transform of the
well-known expansion by Wilcox ([32], Eqs. (4) and (5)), we readily obtain the progressive wave expansion
Uðr;/; h; tÞ ¼ 1

r

X1
k¼0

f kð/; h; t � r=cÞ
rk

; r > R; ð27Þ
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which was also used by Bayliss and Turkel [3] and by Hagstrom and Hariharan [21]. Here the functions fk,
k P 1, are determined by f0 via the recursion formula
1

c
of k

ot
¼ �DS þ kðk � 1Þ

2k
f k�1; k P 1; ð28Þ
with fk(/, h, t) = 0 for t 6 0, while DS denotes the Laplace–Beltrami operator on the unit sphere,
DS ¼
1

sin h
o

oh
sin h

o

oh

� �
þ 1

sin2 h

o2

o/2
: ð29Þ
Let Ynm denote the spherical harmonics normalized over the unit sphere, given by
Y nmð/; hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� jmjÞ!

4pðnþ jmjÞ!

s
P jmjn ðcos hÞeim/; 0 6 jmj 6 n; ð30Þ
where P jmjn denote the associated Legendre functions [23]. We now expand fk in Fourier series, which yields
f kð/; h; tÞ ¼
X1
n¼0

Xn

m¼�n

f k
nmðtÞY nmð/; hÞ; k P 0: ð31Þ
Because the spherical harmonics are eigenfunctions of DS and satisfy
DSY nm ¼ �nðnþ 1ÞY nm; ð32Þ

we obtain from (28) the recursion
1

c
d

dt
f k

nm ¼
ðnþ kÞðn� k þ 1Þ

2k
f k�1

nm ; k P 1 ð33Þ
with f k
nmðtÞ ¼ 0 for t 6 0, k P 0. From (33), we also observe that
f k
nm � 0; k > n: ð34Þ
Next, we combine (27), (31), and (34) to obtain the Fourier series representation
Uðr;/; h; tÞ ¼
X1
n¼0

Xn

m¼�n

U nmðr; tÞY nmð/; hÞ; r > R ð35Þ
with Fourier coefficients
Unmðr; tÞ ¼
1

r

Xn

k¼0

f k
nmðt � r=cÞ

rk
: ð36Þ
Hence, the wave field U is a superposition of infinitely many purely outgoing one-dimensional waves, f k
nm. For

1 6 k 6 n, the functions f k
nm are entirely determined by f 0

nm through the recursion (33), whereas f 0
nm is deter-

mined by the boundary values of U. Indeed, evaluating (36) at r = R and solving for f 0
nm yields
f 0
nmðt � R=cÞ ¼ RU nmðR; tÞ �

Xn

k¼1

f k
nmðt � R=cÞ

Rk : ð37Þ
Then, we introduce (37), with t replaced by t � (r � R)/c, into (36) and thus obtain
rU nmðr; tÞ ¼ f 0
nm t � r � R

c
� R

c

� �
þ
Xn

k¼1

R
r

� �k f k
nm t � r�R

c � R
c

	 

Rk

¼ð37Þ
RU nm R; t � r � R

c

� �
�
Xn

k¼1

f k
nm t � r�R

c � R
c

	 

Rk þ

Xn

k¼1

R
r

� �k f k
nm t � r�R

c � R
c

	 

Rk

¼ R½UnmðR; �Þ� �
Xn

k¼1

1� R
r

� �k
 !

½wk
nm�: ð38Þ



48 M.J. Grote, C. Kirsch / Journal of Computational Physics 221 (2007) 41–62
Here [f] :¼ f(t � (r � R)/c) again denotes the retarded values of any function f; the functions wk
nm are defined by
wk
nmðtÞ :¼ f k

nmðt � R=cÞ
Rk ; k ¼ 1; . . . ; n: ð39Þ
Since R/r < 1, the higher powers (R/r)k in (38) become vanishingly small with increasing k. This observation
will be crucial in reducing both the computational effort and the storage required by the nonreflecting bound-
ary condition – see Section 4.1. By introducing (39) into (33) and using (34), we find that the vector-valued
functions wnm :¼ fwk

nmg
n
k¼1 satisfy a system of ordinary differential equations:
1

c
w0nmðtÞ ¼

1

R
AnwnmðtÞ þ

nðnþ 1Þ
2

UnmðR; tÞen; t > 0; ð40Þ

wnmð0Þ ¼ 0: ð41Þ
Here the matrices An are given by
ðAnÞij ¼
�nðnþ 1Þ=2; i ¼ 1;

ðnþ iÞðn� iþ 1Þ=ð2iÞ; i ¼ jþ 1;

0; otherwise

8><>: ð42Þ
and the vectors en by
ðenÞi ¼ di1; ð43Þ

for i, j = 1, . . ., n.

The Fourier coefficients Unm in (40) are computed by integration of U over the sphere r = R:
U nmðR; tÞ ¼
Z 2p

0

Z p

0

UðR;/; h; tÞY nmð/; hÞ sin hdhd/: ð44Þ
The Fourier expansion (35), together with (38), (40), and (44) can now be used to evaluate U in the exterior
and for all time, given the boundary values of U at B [17]:
rUðr;/; h; tÞ ¼
X1
n¼0

Xn

m¼�n

ðR½U nmðR; �Þ� �
Xn

k¼1

1� R
r

� �k
 !

½wk
nm�ÞY nmð/; hÞ; ð45Þ
for r P R. Although the functions wnm are unknown a priori, they can be computed concurrently with U by
solving (40). Thus (45) yields an explicit analytical representation of U everywhere outside B in terms of (past)
values of U at B and of the auxiliary functions wnm. In contrast to the Kirchhoff formula (16), space and time
are no longer coupled through an integral. Instead, for any point x in D, past values of Unm(R, Æ) and wnm are
needed only from a single instant in time, which is determined by the distance of x from B. This feature will be
instrumental in the derivation below.

From (36) an explicit formula for the operator M in (22) now immediately follows. Since the operator
(c�1ot + or) annihilates the first term in (36), we find that
1

c
o

ot
þ o

or

� �
ðrU nmÞðr; tÞ ¼ �

1

r

Xn

k¼1

k
f k

nmðt � r=cÞ
rk

: ð46Þ
By evaluating (46) at r = R and using (39), we then obtain
1

c
o

ot
þ o

or

� �
ðrU nmÞðR; tÞ ¼ �

1

R
dn � wnmðtÞ; ð47Þ
with dn = (1, 2, . . ., n)T. Multiplication of (47) with Ynm and summation over n and m finally leads to an ex-
plicit formula for the operator M:
ðMUÞð/; h; tÞ ¼ � 1

R

X1
n¼1

Xn

m¼�n

dn � wnmðtÞY nmð/; hÞ: ð48Þ
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This operator coincides with the right-hand side in the nonreflecting boundary condition derived by Grote
and Keller [13,14]. Other partial derivatives of U can also be computed by differentiation of (38). For
instance,
1

c
oUnm

ot
ðr; tÞ ¼ 1

cr
R

oU nm

ot
ðR; �Þ

� �
�
Xn

k¼1

1� R
r

� �k
 !

dwk
nm

dt

� � !
; ð49Þ

oU nm

or
ðr; tÞ ¼ � 1

r2
R UnmðR; �Þ½ � �

Xn

k¼1

1� R
r

� �k
 !

wk
nm

� � !

� 1

cr
R

oU nm

ot
ðR; �Þ

� �
�
Xn

k¼1

1� R
r

� �k
 !

dwk
nm

dt

� � !
� 1

r2

Xn

k¼1

k
R
r

� �k

½wk
nm�: ð50Þ
From (49) and (50), together with appropriate coordinate transformations, we shall now derive explicit for-
mulas for the transfer and propagation operators P and T defined in (23)–(26).

2.3. Efficient evaluation of P and T

Outside the sphere Bj, j = 1, 2, we introduce local spherical coordinates (rj, /j, hj) and choose the two coor-
dinate systems by aligning their common z-axis, and having the two planes /1 = 0 and /2 = 0 coincide – see
Fig. 3. Let d12 denote the (signed) distance between the two origins; note that d12 < 0 and d21 > 0. Then, the
coordinates of any point on B1 in the (r2, /2, h2) coordinate system are given by
r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � 2R1d12 cos h1 þ d2
12

q
; ð51Þ

/2 ¼ /1; ð52Þ
r2 cos h2 ¼ R1 cos h1 � d12; r2 sin h2 ¼ R1 sin h1: ð53Þ
The normal derivative on B1 in (r2, /2, h2)-coordinates is given by
o

or1

¼ a12ðh1Þ
o

or2

þ b12ðh1Þ
o

oh2

ð54Þ
with
a12ðh1Þ ¼
R1 � d12 cos h1

r2

; b12ðh1Þ ¼ �
d12 sin h1

r2
2

: ð55Þ
From (51)–(54) we can now derive the explicit expressions for P and T by using (35). For the transfer operator
T, we obtain
ðT 12U 2Þð/1; h1; tÞ ¼ R1

X1
n¼0

Xn

m¼�n

1

c
o

ot
þ a12ðh1Þ

o

or2

þ 1

R1

� �
U 2;nmðr2; tÞY nmð/2; h2Þ

þ R1b12ðh1Þ
X1
n¼0

Xn

m¼�n

U 2;nmðr2; tÞ
oY nm

oh2

ð/2; h2Þ; ð56Þ
Fig. 3. Local spherical coordinates (r1, h1) and (r2, h2) in the yz-plane.
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and for the propagation operator, P, we obtain
ðP 12U 2Þð/1; h1; tÞ ¼
X1
n¼0

Xn

m¼�n

U 2;nmðr2; tÞY nmð/2; h2Þ: ð57Þ
The Fourier coefficients U2,nm(r2, t) and its partial derivatives are evaluated by (38), (49) and (50), which in-
volves retarded values. Explicit formulas for P21 and T21 are obtained in a similar way by exchanging the indi-
ces 1 and 2 in (56) and (57).

2.4. Well posedness

Having derived explicit formulas for the operators M, P, and T, which are needed for the nonreflecting
boundary condition (18)–(21), we now state the full initial-boundary value problem for U inside the compu-
tational domain X = X1 [ X2:
o
2U
ot2
� divðArUÞ ¼ F in X� I ; I ¼ ð0; T Þ; ð58Þ

U ¼ U 0 in X� f0g; ð59Þ
oU
ot
¼ V 0 in X� f0g; ð60Þ

U ¼ G on C� I ; ð61Þ

B1U :¼ 1

c
o

ot
þ o

or1

� �
ðr1UÞ ¼ M1U 1 þ T 12U 2 on B1 � I ; ð62Þ

B2U :¼ 1

c
o

ot
þ o

or2

� �
ðr2UÞ ¼ M2U 2 þ T 21U 1 on B2 � I ; ð63Þ

U 1 þ P 12U 2 ¼ U on B1 � I ; ð64Þ
P 21U 1 þ U 2 ¼ U on B2 � I : ð65Þ
We shall now show that this boundary value problem has a unique solution, which coincides with the solution
to the original problem (1)–(4).

Theorem 2. Let U be the unique (strong) solution to the exterior Dirichlet problem (1)–(4) and assume that U

satisfies (5)–(7) in the exterior region, D · I. The two-scatterer boundary value problem (58)–(65) has a unique

solution in X, which coincides with the restriction of U to X.

Proof. Existence. We shall show that U|X·I is a solution to (58)–(65). Since U satisfies (1)–(4), it trivially sat-
isfies (58)–(61). To show that U|X·I satisfies the nonreflecting boundary condition (62)–(65) on B · I, we con-
sider in D� I the unique decomposition U ” U1 + U2 provided by Proposition 1. Since U1 + U2 satisfies by
construction the nonreflecting boundary condition (62)–(65) on B · I, so does the restriction of U to X · I.
Therefore, U|X·I is a solution of the boundary value problem (58)–(65).

Uniqueness. We shall show that U can be extended from X into D as a C2 solution. Then, by uniqueness of
the solution in X1 · I, U will also be unique in X · I. Let eU be the unique solution of the exterior boundary
value problem
eU ¼ U in X� I ; ð66ÞeU ¼ 0; ot

eU ¼ 0 in D� f0g; ð67ÞeU ¼ U on B� I ; ð68Þ
c�2ott

eU � D eU ¼ 0 in D� I : ð69Þ
Because eU is continuous on B · I, all time and tangential derivatives of eU are also continuous there. It re-
mains to show that its normal derivative is also continuous across B. With Proposition 1 applied to eU , we
obtain eU ¼ eU 1 þ eU 2 in D · I, where fUj ¼ U j in Dj · I, j = 1, 2. From (62) and (63), we infer that Bj

eU ¼
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BjU on Bj · I, and thus, by continuity of time and tangential derivatives of eU , we have orj
eU ¼ orj U on Bj · I,

j = 1, 2. Therefore, the normal derivative of eU , together with all its time and tangential derivatives, is contin-
uous across B, which implies that eU is a genuine C2 solution of the initial-boundary value problem in X1 · I.
Hence, it is unique and so is its restriction U to X · I. h
3. Multiple scattering

The derivation of the nonreflecting boundary condition presented in Section 2 for two scatterers is easily
generalized to the case of several scatterers. We consider a situation with J scatterers, and surround each scat-
terer by a sphere Bj of radius Rj, j = 1, . . ., J. Again, we denote by B ¼

SJ
j¼1Bj the entire artificial boundary

and by Dj the unbounded region outside the jth sphere. Hence the computational domain X ¼
SJ

j¼1Xj, where
Xj denotes the finite computational region inside Bj, whereas D ¼

TJ
j¼1Dj denotes the unbounded exterior

region.
In D, we now split the scattered wave into J purely outgoing waves U1, . . ., UJ, which solve the problems
1

c2

o2Uj

ot2
� DU j ¼ 0 in Dj � I ; ð70Þ

Uj ¼ 0 in Dj � f0g; ð71Þ
oU j

ot
¼ 0 in Dj � f0g ð72Þ
for j = 1, . . ., J. Thus, every Uj is entirely determined by its values on Bj · I; it is given by (45). The matching
condition is now given by
XJ

j¼1

Uj ¼ U on B: ð73Þ
In analogy to Proposition 1, one can show that
U �
XJ

j¼1

U j in D� I ð74Þ
and that this decomposition is unique. Therefore, we immediately find the nonreflecting boundary condition
for a multiple scattering problem with J scatterers:
BjU :¼ 1

c
o

ot
þ o

orj

� �
ðrjUÞ ¼ MjUj þ

XJ

‘¼1
‘ 6¼j

T j‘U ‘ on Bj � I ; ð75Þ

Uj þ
XJ

‘¼1
‘ 6¼j

P j‘U ‘ ¼ U on Bj � I ; ð76Þ
for j = 1, . . ., J. Here M, T, and P are defined as follows:
Mj : UjjBj
7! BjU jjBj

; T j‘ : U ‘jB‘ 7! BjU ‘jBj
; P j‘ : U ‘jB‘ 7! U ‘jBj

: ð77Þ
No additional analytical derivation due to coordinate transformation, etc. is needed once the situation of two
scatterers has been resolved. Hence, Mj is given by
ðMjU jÞð/j; hj; tÞ ¼ �
1

Rj

X1
n¼1

Xn

m¼�n

dn � wj;nmðtÞY nmð/j; hjÞ; ð78Þ
while the operators T and P are again given by (56) and (57), with ‘1’ replaced by ‘j’ and ‘2’ replaced by ‘‘’, or
vice versa. Each wj,nm solves (40) and (41), where the coefficients Unm of U at B are replaced by those of Uj at
Bj. For J = 1, (75) and (76) reduce to the nonreflecting boundary condition for a single computational domain
[13,14], whereas for J = 2 they correspond to (62)–(65).
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To further simplify the notation, we now define the (symbolic) vectors
BU jB ¼ ðB1U jB1
;B2U jB2

; . . . ;BJ U jBJ
ÞT; ð79Þ

U jB ¼ ðU jB1
;U jB2

; . . . ;U jBJ
ÞT; ð80Þ

U out ¼ ðU 1jB1
;U 2jB2

; . . . ;U J jBJ
ÞT ð81Þ
and the operator matrices
T ¼ fT j‘gJ
j;‘¼1; P ¼ fP j‘gJ

j;‘¼1: ð82Þ

With these notations the full initial-boundary value problem in X = ¨Xj with the nonreflecting boundary con-
dition (75) and (76) becomes
o2U
ot2
� divðArUÞ ¼ F in X� I ; I ¼ ð0; T Þ; ð83Þ

U ¼ U 0 in X� f0g; ð84Þ
oU
ot
¼ V 0 in X� f0g; ð85Þ

U ¼ G on C� I ; ð86Þ
BU ¼ TU out on B� I ; ð87Þ
PU out ¼ U on B� I : ð88Þ
4. Efficient implementation and discretization

We consider the multiple scattering problem (83)–(88) and let Nh be the typical number of grid points in Xj

in any space dimension. Hence the work per time step, WX, for any standard finite difference or finite element
method in the interior will be proportional to N 3

h, and so will be the storage required, SX. We shall now show
how to efficiently evaluate the terms appearing in (87) and (88) so that the additional computational work,
WB, and storage, SB, due to the nonreflecting boundary condition, scale like N 3

h as well. Then, we shall discuss
in detail a typical implementation of (83)–(88) and exhibit the full algorithm.

4.1. Work and storage

In practice, the series (45) used in the nonreflecting boundary condition (87) and (88) is truncated at some
finite number, NB. We let U NB denote the corresponding approximation,
U NBðr;/; h; tÞ :¼ R
r

XNB

n¼0

Xn

m¼�n

½UnmðR; �Þ�Y nmð/; hÞ þ �
1

r

XNB

n¼1

Xn

m¼�n

m
n

k¼1
1� R

r

� �k
 !

½wk
nm�Y nmð/; hÞ: ð89Þ
The truncation error kU � UNBk2 is bounded from above by N�ðkþ1Þ
B if U 2 Ck, due to spectral accuracy. Be-

cause the discretization error in the interior typically decays no faster than N�p
h for any pth order discretiza-

tion, the two errors are comparable for NB typically much smaller than Nh (for reasonably smooth solutions).
To reduce the amount of work due to the propagation and transfer operators, we shall further approximate

(89) by neglecting vanishingly small terms in the triple sum. For KB 6 NB, we thus define
U NB;KBðr;/; h; tÞ :¼ R
r

XNB

n¼0

Xn

m¼�n

½UnmðR; �Þ�Y nmð/; hÞ þ �
1

r

XNB

n¼1

Xn

m¼�n

Xn

k¼1

wk
nm

" #
Y nmð/; hÞ

þ 1

r

XNB

n¼1

Xn

m¼�n

Xminfn;KBg

k¼1

R
r

� �k

wk
nm

� �
Y nmð/; hÞ: ð90Þ
Recall that the square brackets denote time retarded values. The error due to this second approximation be-

haves like ðR=rÞ�ðKBþ2Þ. Since R/r is strictly smaller than 1, that error decays exponentially fast; therefore, we
can choose KB much smaller than NB, independently of the mesh size.
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Next, we define
wR
nmðtÞ :¼

Xn

k¼1

wk
nmðtÞ: ð91Þ
For each (n, m) we need to store the value of wR
nm and the individual values of wk

nm, but only for
k = 1, . . ., min{n, KB}. As a consequence, the storage required for the wk

nm in (90) is reduced from OðN 3
BÞ to

OðN 2
BKBÞ.

Evaluation of M. To efficiently evaluate MU we rewrite (48) as
ðMUÞð/; h; tÞ ¼ � 1

R

XNB

m¼�NB

XNB

n¼maxfjmj;1g
dn � wnmðtÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl} cnmP jmjn ðcos hÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} eim/: ð92Þ
Here, we first evaluate the inner bracket (for each n, m), then the outer bracket (for each m, h), and finally the
whole expression (for each /, h), which requires OðN 3

BÞ, OðN 2
BNhÞ, and OðNBN 2

hÞ operations, respectively.
To compute wnm(t) we need to solve the differential equations (40). If we opt for implicit time stepping, an

n · n linear system needs to be solved at each time step for every (n, m), n 6 NB. Clearly, the LU decomposi-
tion of the matrices I � cDt(2R)�1An (see also Section 4.2) then needs to be computed only once. Hence, the
work per time step scales at worst like N 4

B, because of the forward and backward substitutions for the solution
the systems of linear equations, n = 1, . . ., NB, |m| 6 n, each of size n · n – see (109). Usually N 4

B is negligible
because NB is small, yet for large values it can be reduced to N 3

B by using either compression techniques
[1,25,28], or predictor–corrector time integrators since An is sparse. The storage required for the solution of
(40) and (41) also scales like N 3

B, because the matrices An only depend on n.
In (40) the integral
UnmðR; tÞ ¼ cnm

Z p

0

Z 2p

0

UðR;/; h; tÞe�im/ d/|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} P jmjn ðcos hÞ sin hdh; ð93Þ
is first evaluated over /, for every m = �NB, . . ., NB and for all grid values of h, which requires OðN BN 2
hÞ oper-

ations. Then, the remaining one-dimensional integrals over h are evaluated for all n and m, which requires
OðN 2

BN hÞ operations. The computational cost for the evaluation of the Fourier coefficients Unm may be further
reduced with a fast transformation method [27].

Evaluation of P. The operator Pj‘ applied to U‘ is evaluated on Bj as
ðP j‘U ‘Þð/j; hj; tÞ ¼
XNB‘

m¼�NB‘

XNB‘

n¼jmj
U ‘;nmðr‘; tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} cnmP jmjn ðcos h‘Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} eim/‘ : ð94Þ
Because /‘ = /j, the distance r‘(hj) from the center of B‘ to (Rj, hj) 2 Bj depends only on hj. Indeed, the relation
between the j- and ‘-coordinates on the artificial boundary component Bj is given by
r‘ sin h‘ ¼ Rj sin hj; ð95Þ
r‘ cos h‘ ¼ Rj cos hj � dj‘: ð96Þ
As a consequence of this key observation, the outer bracket in (94) is independent of /j and hence needs to be
computed only for every n, m, and hj. Each Fourier coefficient U‘,nm in (90) is evaluated by
r‘U ‘;nmðr‘; tÞ ’ R‘½U ‘;nmðR‘; �Þ� � ½wR
‘;nm� þ

Xminfn;KB‘
g

k¼1

R‘

r‘

� �k

½wk
‘;nm�; ð97Þ
again after truncation at KB‘ . The accuracy of the approximation (97) has been analyzed in [17]. The work
involved in (94) is OðN 2

B‘
KB‘NhÞ, OðN 2

B‘
NhÞ, and OðNB‘N

2
hÞ operations, respectively.

When three or more subdomains are present, the z-axes must be aligned pairwise. Then the propagated field
Pj‘U‘ must be interpolated at grid points in the (fixed) local coordinate system on Bj. The additional cost for
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this interpolation also scales like N 2
h and is therefore included in the work estimate above. The computational

cost can be further reduced by tabulating and storing the values of the spherical harmonics in advance, at the
required grid points.

Evaluation of T. The operator Tj‘ applied to U‘ and evaluated on Bj is given by
ðT j‘U ‘Þð/j; hj; tÞ ¼ Rj

XNB‘

n¼0

Xn

m¼�n

1

c
o

ot
þ aj‘ðhjÞ

o

or‘
þ 1

Rj

� �
U ‘;nmðr‘; tÞY nmð/‘; h‘Þ

þ Rjbj‘ðhjÞ
XNB‘

n¼0

Xn

m¼�n

U ‘;nmðr‘; tÞ
oY nm

oh‘
ð/‘; h‘Þ; ð98Þ
where the Fourier coefficients are again approximated by (97). By definition of the retarded values for a time-
dependent function f, we have
½f � ¼ ½f �ðr‘; tÞ ¼ f t � r‘ � R‘

c

� �
; ð99Þ

1

c
o½f �
ot
¼ � o½f �

or‘
¼ 1

c
½f 0�: ð100Þ
The partial derivatives of U‘,nm are obtained via finite differences applied to the retarded time derivatives of
U‘,nm(R‘, Æ), wk

‘;nm and wR
‘;nm. Hence, the work requirements are of the same order as for the propagation oper-

ator, namely OðN 2
B‘

KB‘N h þ NB‘N
2
hÞ operations.

Storage of past values. The storage of the retarded values of U‘,nm(R‘, Æ), wk
‘;nm, and wR

‘;nm is essentially given
by Oðm‘N 2

B‘
Þ, Oðm‘N 2

B‘
KB‘Þ, and Oðm‘N 2

B‘
Þ, respectively. Here m‘ denotes the number of time steps any wave

needs to propagate from B‘ to the farthest point on any other sphere Bj, j 6¼ ‘. It is given by
m‘ ¼
max

j 6¼‘
ðd‘j þ RjÞ � R‘

cDt

2666
3777; ‘ ¼ 1; . . . ; J ; ð101Þ
and hence depends linearly on the problem size. Due to Huygens’ principle only a finite time window of the past

needs to be stored, whose size depends only on the geometry of the problem; in particular, it is independent of
the final time of the computation.

Total cost and storage. Gathering the above work and storage estimates we find that the work and storage
required for the nonreflecting boundary condition (87) and (88) at B‘ scale like
W B‘ ¼ OðN B‘N
2
h þ N 2

B‘
KB‘N h þ N 3

B‘
Þ; ð102Þ

SB‘ ¼ Oðm‘N 2
B‘

KB‘ þ N 3
B‘
Þ; ‘ ¼ 1; . . . ; J : ð103Þ
Here we assume that any one of the techniques mentioned earlier in this section has been used to reduce the
cost for the solution of the systems of ordinary differential equations from N 4

B to N 3
B. With Nt :¼

max‘2{1, . . ., J}m‘ (the maximal number of retarded values to be stored on any boundary component),
NB :¼ max‘2f1;...;JgNB‘ , and KB :¼ max‘2f1;...;JgKB‘ , the total work and storage for the nonreflecting boundary
condition (87) and (88) scales like
W B ¼ OðNBN 2
h þ KBN 2

BN h þ N 3
BÞ; ð104Þ

SB ¼ OðKBN tN 2
B þ N 3

BÞ: ð105Þ
Because KB is independent of the mesh size, and hence independent of Nh, while NB scales at worst like Nh, we
have shown that the amount of total work per time step due to the nonreflecting boundary condition scales at
worst like OðN 3

hÞ, which corresponds to the computational effort of the numerical scheme inside X. The stor-
age of past values, which cannot be avoided, is kept minimal by storing Fourier coefficients instead of grid
values and by judiciously employing the rapid decay of higher modes n > KB with increasing distance from
their respective subdomains.
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4.2. Finite difference discretization

We shall now show how to discretize the nonreflecting boundary condition in (83)–(88) with a standard
second-order finite difference scheme. In each sub-domain Xj, we choose local spherical coordinates and an
equidistant grid along the artificial boundary, for simplicity. We denote by Nr the corresponding radial index
of the grid points located at a typical Bj. The time interval I = (0,T) is discretized at equidistant points
tk = kDt, k = 0, 1, . . .

Next, we denote by U k
i the values of the numerical solution at r = ri and at time tk, and discretize (83) by

second-order central finite differences in space and time. Omitting the sub-domain index j, a finite difference
discretization of (83) at i = Nr reduces to
0 ¼
U kþ1

Nr
� 2Uk

Nr
þ U k�1

Nr

c2Dt2
� 1

R2
ðDh

SUÞkNr
�

Rþ Dr
2

	 
2
U k

Nrþ1 � 2 R2 þ Dr2

4

� �
U k

Nr
þ R� Dr

2

	 
2
U k

Nr�1

R2Dr2
ð106Þ
with Dh
S a finite difference approximation of the Laplace–Beltrami operator (29).

The values on the ‘‘ghost layer’’ i = Nr + 1, which appear in (106), are eliminated via second-order discret-
ization of the boundary condition (87) and of the matching condition (88),
R
U kþ1

Nr
� Uk�1

Nr

2cDt
þ
ðRþ DrÞUk

Nrþ1 � ðR� DrÞU k
Nr�1

2Dr
¼ ðTUoutÞk; ð107Þ

ðPU outÞk ¼ U k
Nr
: ð108Þ
Here, R = Rj denotes the radius of the artificial boundary Bj, Uout denotes the auxiliary values on all boundary
components (81), (TUout)

k denotes the values on the right-hand side of (87) at time tk, (PUout)
k denotes the

values on the left-hand side of (88) at time tk, and c > 0 denotes the wave speed. The ordinary differential equa-
tions (40) are discretized for instance with the unconditionally stable implicit trapezoidal rule
I � cDt
2R

An

� �
wk

nm ¼ I þ cDt
2R

An

� �
wk�1

nm þ
cDt
2

nðnþ 1Þ
2

ðUk
nm þ U k�1

nm Þen: ð109Þ
Thus, we finally obtain the following numerical scheme for the solution of (88), (84)–(88).

Algorithm

� Initialize U0 and U1 in X.
� Initialize the Fourier coefficients of U 0

out and w0
nm.

� At each time step tk, given Uk, Uk�1, and past values of Uout, wnm:
– compute Uk

out by (76), using (94) and (97);
– compute the Fourier coefficients of Uk

out by (93);
– advance wk

nm using (109);

– advance Uk+1 inside X;
– compute (TUout)

k from (98) and (97);
– compute Ukþ1

Nr
by (106) and (107).

Except for the numerical solution of the small ordinary differential equation system in (40), the algorithm
above is fully explicit in time. Moreover, both the computations inside individual subdomains Xj and those at
their respective artificial boundaries Bj can be computed independently of each other, and in parallel.

5. Numerical results

To assess the accuracy of the nonreflecting boundary condition for multiple scattering (87) and (88) we
shall now combine it with a finite difference method, as described in Section 4, and apply it to a series of test
problems. First, we shall consider a simple model problem, for which the exact solution is known. It is just
to compute the radiating wave field of a transient point source in a homogeneous medium, as it propagates
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through the two disjoint components of our computational domain, X. Second, we shall present computa-
tions for scattering from two sound-soft spheres; in particular, we shall compare the numerical solution
obtained from a true multiple scattering approach with that obtained by embedding the two obstacles in
a single much larger domain. Third, we shall compute the scattered field from a transient plane wave packet
impinging on two spheres. All three test problems are axisymmetric about the z-axis, so that the solution U

is independent of /.

5.1. Accuracy and convergence study

To verify the accuracy and convergence of the numerical method, we first consider the following simple test
problem, where U corresponds to an outgoing spherical wave that originates from an off-centered point source
at c2 + (0, d) on the z-axis – see Fig. 4. The wave profile g = g(x) is chosen twice continuously differentiable
and such that U = 0 in the exterior at t = 0. The exact values of U are prescribed on the boundaries C1 and C2

of the two ‘‘obstacles’’, located at r1 = a1 and r2 = a2, respectively. Hence, the exact solution in (r2, h2)-coor-
dinates is given by
Uðr2; h2; tÞ ¼
gðr0 � ctÞ

r0
; r0 ¼

r2 sin h2

r2 cos h2

� �
�

0

d

� ����� �������� ����; t P 0 ð110Þ
with 0 6 d < a2. We choose c1 = (0, 1), c2 = (0, �1), a1 = 0.5, a2 = 0.6, R1 = 1, R2 = 0.9, and d = 0.4 – see
Fig. 4. Note that the singularity at r 0 = 0 is of no concern here, because that point lies strictly outside X.
Fig. 4. The geometry used for the numerical examples. The shaded region is the computational domain X.
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Fig. 5. The total L2-error is shown vs. the mesh size h for different values of NB.
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Since the boundary condition (87) and (88) on the artificial boundaries at rj = Rj, j = 1, 2, is exact, the
numerical solution in X must converge to the exact solution inside X, as the mesh size h! 0 and the time step
Dt! 0. To verify this fact, we compute the solution until T = 8, while monitoring the L2-error with respect to
the exact solution,
Fig. 6.
obtain
(88); (r
compu
EhðtÞ :¼ kU exð�; �; tÞ � Unumð�; �; tÞkL2ðXÞ
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Scattering from two sound-soft spheres. Contour lines of the wave field are shown at time t = 1. (Left) The numerical solution
ed by a second-order finite difference method combined with the nonreflecting boundary condition for multiple scattering (87) and
ight) the numerical solution obtained by a finite element method combined with the nonreflecting boundary condition for a single
tational domain (48).
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Fig. 7. Plane wave scattering: the profile of the wave packet is shown.
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at each time step. In Fig. 5, the total L2-error kEhðtÞkL2ð0;T Þ is shown vs. h for different truncation indices NB

(see Section 4). For NB = 80, we observe global second-order convergence of the method for the entire mesh
sequence considered here. Here, and in all subsequent computations we use KB = 50 in (97) because the obsta-
cles are rather close to each other.

In Fig. 5, we also observe the subtle interplay between the approximation error in the boundary condition,
controlled by NB, and that due to discretization in the interior of X. For small values of NB, the error due to
truncation tends to dominate, so that further mesh refinement does not improve the accuracy. In contrast, if
we keep the mesh fixed at h . 0.01, for instance, we observe no further improvement in accuracy from increas-
ing NB up to 80; in fact, with NB = 20 the level of accuracy imposed by the discretization inside X has already
been reached. In general convergence can only be achieved by systematically reducing h while increasing NB,
simultaneously.
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Fig. 8. Plane wave scattering: the total wave field is shown at selected instants in time.
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5.2. Comparison with the solution in a single computational domain

Next, we consider acoustic scattering from two sound-soft spheres located at c1, c2 and with radii a1, a2,
respectively – see Fig. 4; hence, U vanishes on the boundaries of the two obstacles. Here we choose the same
parameter values as in the previous test problem. At t = 0, we set both U and otU to zero throughout X, but
for a small region about (y, z) = (0, �0.25). There, a smooth initial disturbance in the velocity field generates
an outgoing wave, which impinges on the second and later on the first obstacle above. Then, the propagating
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Fig. 9. Plane wave scattering: the total wave at three selected points in space over time – see Fig. 4 – for NB = 0 and NB = 40.
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wave circumvents the upper sphere, while multiple reflections occur between the two obstacles, repeatedly
shedding waves as they move back and forth.

To verify the accuracy of the boundary condition for multiple scattering (87) and (88) we now compare the
numerical solution obtained by using a finite difference scheme, with that obtained in a single larger compu-
tational domain that contains the two obstacles; here, the nonreflecting boundary condition (48) is imposed at
the artificial spherical boundary R = 2 – see [14] for a finite element formulation. As shown in Fig. 6, the two
numerical solutions, displayed at time t = 1, coincide inside X.

5.3. Plane wave scattering

Finally, we consider an incident plane wave packet Ui(x, t) = f(z + t) impinging upon two sound-soft
spheres; its profile is shown in Fig. 7. The scattered field, Us, thus satisfies Us = �Ui on the surface of the
two obstacles.

In Fig. 8, the numerical solution with the nonreflecting boundary condition for multiple scattering (87) and
(88) is shown at selected instants in time. At time t = 0 the incident plane wave penetrates X1 from above and
impinges upon the upper sphere. Then, the incident plane wave proceeds downward until it leaves X1 at time
t . 2. It later reaches X2 and is reflected by the lower obstacle. The scattered wave propagates upward back
into X1, where again it is reflected by the upper obstacle. By t . 4, the incident wave packet has entirely left X,
yet the scattered waves remain; they bounce back and forth between the two obstacles while continuously radi-
ating energy into the surrounding unbounded medium.

In Fig. 9 we illustrate the influence of truncation at NB on the accuracy of the nonreflecting boundary con-
dition. To do so, we compare two numerical solutions, obtained either with NB = 40 or NB = 0, at three
selected points in space – see Fig. 4. We remark that setting NB = 0 in (87) and (88) corresponds to approx-
imating the decomposition of U in the two purely outgoing wave fields U1, U2 outside X by two spherically
symmetric wave fields, U = U1(r1, t) + U2(r2, t). In that case the boundary operator B reduces to the first-
order Bayliss–Turkel condition [3] while the extension operators P and T essentially approximate the incoming
part arriving from the other obstacle by spherical waves; thus, the effect of the other obstacle is (crudely)
replaced by that of a simple point source.

The two upper frames show the time evolution of the solution at a point on the east of the upper sphere.
That location is first reached by the incident plane wave, and again at later time by the first reflection from the
lower obstacle. With NB = 0, this second arrival is barely visible, accompanied by various spurious signals. In
Fig. 9, the two middle frames show the solution below the south pole of the upper obstacle. For NB = 0, spu-
rious reflection occurs from the artificial boundary B1, which obscures the reflected wave propagating
upwards. Moreover, the plane wave is propagated into X2 with rather poor accuracy. For NB = 40, however,
the plane wave passes the artificial boundaries B1, B2 without spurious reflections, before it impinges upon the
lower obstacle; then, the reflected wave again crosses B2 and B1 to re-enter X1. This behavior is correctly repro-
duced with NB = 40, but rather poorly with NB = 0.
Fig. 10. Plane wave scattering: the L2-norm of the numerical solution (NB = KB = 50) is shown vs. time to illustrate the overall stability of
our numerical scheme.
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The two lower frames in Fig. 9 show the solution at a point on the east of the lower obstacle. The incident
wave first reaches this point, followed by the reflection from the upper obstacle. For NB = 0, the incident plane
wave is distorted by spurious reflection while the arrival time of the reflected wave is incorrect. Furthermore,
for NB = 0, a spurious signal precedes the incident wave packet, due the over-simplified representation of U in
the exterior. With NB = 40, sufficiently many Fourier modes are included in the nonreflecting boundary con-
dition to accurately represent the exterior wave field: no spurious precursor appears in that case.

Finally, to verify the numerical stability of the scheme over a long time, we show in Fig. 10 the approximate
L2-norm of the numerical solution in X vs. time.
6. Conclusion

We have derived an exact nonreflecting boundary condition (NBC) for time-dependent multiple scattering
problems in three space dimensions, which holds when the artificial boundary B consists of a union of disjoint
spherical components. It is given by (87) and (88) and avoids spurious reflection from B. We have proved that
the NBC for multiple scattering leads to a well-posed initial-boundary value problem in the computational
domain X, and that its solution coincides with the restriction to X of the solution in the infinite region.

The NBC involves only first-order derivatives; therefore, it is easily coupled with finite difference or finite
element methods. Hence, the full numerical scheme retains the global rate of convergence of the interior
scheme, while the computational work due to the NBC only involves a fraction of the computational work
inside X, independently of the mesh size or the desired overall accuracy. Both high accuracy and convergence
of the method have been demonstrated via numerical experiments with a standard second-order finite differ-
ence method.

Because the artificial boundary no longer needs to be convex, the size of the computational domain can be
chosen much smaller than with standard absorbing boundary conditions or perfectly matched layers; more-
over, the size of the computational domain no longer increases with the relative distances between the various
sub-scatterers. Although the artificial boundary must be of simple geometric shape, here a union of disjoint
spheres, the NBC is not tied to any particular coordinate system.

The derivation of the NBC for multiple scattering is based on the decomposition of the scattered field in
several purely outgoing wave fields. A similar approach was previously used by the authors to derive a Dirich-
let-to-Neumann boundary condition for time-harmonic multiple scattering [18]. The same approach can be
used to derive exact NBCs for multiple scattering for other wave equations or geometries, such as ellipsoids
or wave guides, for which the NBC with a single (convex) artificial boundary is explicitly known. In particular,
the derivation presented here extends to time-dependent electromagnetic and elastic wave scattering, where
similar boundary conditions are known [11,15,16].

The computational work required by the NBC for multiple scattering asymptotically scales like the work
required by any standard finite difference or finite element method in the interior and, in practice, it is only a
fraction of it. The storage of past values is kept minimal by storing Fourier coefficients instead of grid values
and by judiciously employing the rapid decay of certain components of higher Fourier modes with increasing
distance from their respective subdomains. At the expense of a more complicated implementation, further
reduction in the work and storage could probably be attained by employing advanced compression techniques
in time [1,25] for the past of the auxiliary functions wnm(t) needed in the NBC, or a fast transform for spherical
harmonics [27].
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